Coating Applications for Gas Turbine Engines
Coating Applications for Gas Turbine Engines

- Afterburner Section (not illustrated)
- Combustion Section
- Bearings & Accessories
- Turbine Section
- Compressor Section
Afterburner Section (not illustrated)

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Coated Area</th>
<th>Typical Coating Type</th>
<th>Typical Mating Surface</th>
<th>Typical Objective of Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afterburner Actuator Piston Rod</td>
<td>O.D. of rod</td>
<td>Tungsten carbide LW-1N40</td>
<td>Cast iron seal rings</td>
<td>Sliding, fretting wear resistance</td>
</tr>
<tr>
<td>Afterburner Combustion Chamber Liner</td>
<td>Interior surface</td>
<td>Thermal barrier LTB-8</td>
<td>Hot gases</td>
<td>Thermal barrier</td>
</tr>
<tr>
<td>Afterburner Fuel Pump Impeller</td>
<td>Bearing journals</td>
<td>Tungsten carbide LW-1N40</td>
<td>Seal</td>
<td>Sliding wear resistance</td>
</tr>
<tr>
<td>Afterburner Nozzle Support Assembly</td>
<td>Bearing surfaces</td>
<td>Chrome carbide LC-1B, LC-1B</td>
<td>Self-mating, coated nozzle segments</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Afterburner Seals, Flaps and Nozzle Segments</td>
<td>Bearing surfaces</td>
<td>Chrome carbide LC-1B, LC-1B</td>
<td>Self-mating, coated bearing surfaces</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Afterburner Seals, Flaps and Nozzle Segments</td>
<td>Flame impingement surfaces</td>
<td>Thermal barrier LTB-8B</td>
<td>Hot gases</td>
<td>Thermal barrier</td>
</tr>
<tr>
<td>Afterburner Spray Bars</td>
<td>O.D. bearing surfaces</td>
<td>Chrome carbide LC-1B</td>
<td>Cobalt alloy bushing</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Afterburner Spray Bars (Afterburner Tubes)</td>
<td>Nozzle ring</td>
<td>SermaLoy** slurry aluminide</td>
<td>Hot exhaust gases</td>
<td>High-temperature oxidation resistance</td>
</tr>
</tbody>
</table>

Combustion Section

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Coated Area</th>
<th>Typical Coating Type</th>
<th>Typical Mating Surface</th>
<th>Typical Objective of Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Chamber Assembly, Liners and Domes</td>
<td>Interior surfaces</td>
<td>Thermal barrier LTB-8, LTB-12, LTB-13, LTB-16, Tribomet® MCrAlY</td>
<td>Hot gases</td>
<td>Thermal barrier</td>
</tr>
<tr>
<td>Combustion Chamber Cases</td>
<td>O.D. (non-gas path) surfaces</td>
<td>SermaTel® 2241 Al-ceramic coating; SermaLoy J slurry aluminide</td>
<td>Ambient environment</td>
<td>Corrosion resistance</td>
</tr>
<tr>
<td>Combustion Chamber Clamp</td>
<td>I.D. gripping surface</td>
<td>Chrome carbide LC-1B, LC-1B, Tribomet® T104CS</td>
<td>Self-mating, coated combustion chamber liner O.D.</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Combustion Chamber Liner</td>
<td>O.D. surface</td>
<td>Chrome carbide LC-1B, Tribomet® T104CS</td>
<td>Self-mating, coated combustion chamber clamp I.D.</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Combustion Chamber Positioning Pin</td>
<td>Bearing surfaces</td>
<td>Tungsten carbide LW-1N40; Chrome carbide LC-1B</td>
<td>Self-mating, coated bearing surfaces</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Combustion Chamber Support Assembly</td>
<td>I.D. bearing surfaces</td>
<td>Chrome carbide LC-1B, LC-1B</td>
<td>Self-mating, coated lines and guides</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Fuel Nozzle Nut</td>
<td>O.D. bearing surfaces</td>
<td>Chrome carbide LC-1B, LC-1B</td>
<td>Self-mating, coated I.D. of swirler</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Fuel Nozzle Nut</td>
<td>Threads on I.D.</td>
<td>Copper-nickel-indium LCN-1</td>
<td>Threads on fuel manifold</td>
<td>Preventing nozzle nut loosening</td>
</tr>
<tr>
<td>Fuel Nozzle Nut</td>
<td>Threads on I.D.</td>
<td>SermaLoy** J slurry aluminide</td>
<td>Hot air, fuel</td>
<td>Oxidation and sulphidation resistance</td>
</tr>
<tr>
<td>Fuel Swirler</td>
<td>I.D. bearing surfaces</td>
<td>Chrome carbide LC-1B, LC-1B</td>
<td>Self-mating, coated O.D.</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Thermocouple Probes</td>
<td>Gas path</td>
<td>SermaLoy** J slurry aluminide</td>
<td>Hot gases</td>
<td>Oxidation and sulphidation resistance</td>
</tr>
</tbody>
</table>

Bearings & Accessories

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Coated Area</th>
<th>Typical Coating Type</th>
<th>Typical Mating Surface</th>
<th>Typical Objective of Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing Housings & Seal Assemblies</td>
<td>I.D. sealing surfaces</td>
<td>Chrome carbide LC-1C, Tungsten carbide LW-1</td>
<td>Carbon rings</td>
<td>Sliding wear resistance</td>
</tr>
<tr>
<td>Bearing Rings</td>
<td>Bearing surfaces</td>
<td>Titanium nitride 24K</td>
<td>Housings</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Bearing Seal Housings</td>
<td>I.D. secondary seal area</td>
<td>Tungsten carbide LW-1N30, LW-1N40</td>
<td>Tungsten carbide coated seal rings</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Bearing Seal Seats & Spacers</td>
<td>Annular sealing face</td>
<td>Chrome carbide LC-1C, Tungsten carbide LW-1</td>
<td>Carbon-graphite seal</td>
<td>Sliding wear (both surfaces) resistance</td>
</tr>
<tr>
<td>Bearing Supports</td>
<td>Non-contact areas</td>
<td>SermaTel® W, 2F-1, 5380, 53800P Al-ceramic coatings</td>
<td>—</td>
<td>Corrosion resistance</td>
</tr>
<tr>
<td>Gearbox Support Pins, Bushings & Lugs</td>
<td>Bearing surfaces</td>
<td>Tungsten carbide LW-1N40</td>
<td>Self-mating, coated bearing surfaces</td>
<td>Fretting resistance</td>
</tr>
<tr>
<td>Labyrinth Seal Fins & Seal Teeth</td>
<td>Knifle-edge tips and face</td>
<td>Tungsten carbide LW-1N40; chrome carbide LC-1B; aluminum oxide LA-2, LA-21; Tribomet® CBN abrasive</td>
<td>Porous metal, honeycomb or abradable coatings</td>
<td>Rubbing wear resistance</td>
</tr>
<tr>
<td>Main Shaft Bearings</td>
<td>Bearing shoulders</td>
<td>Titanium nitride 24K</td>
<td>Bearing cage, silver-plated</td>
<td>Sliding wear resistance</td>
</tr>
<tr>
<td>Oil Pump Gears</td>
<td>O.D. bearing journals</td>
<td>Tungsten carbide LW-1N40</td>
<td>Bronze bushing or aluminum housing</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Oil Scavenge & Breather Tubes</td>
<td>O.D. sealing surfaces</td>
<td>Tungsten carbide LW-1N40</td>
<td>Steel</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Part Name</td>
<td>Coated Area</td>
<td>Typical Coating Type</td>
<td>Typical Mating Surface</td>
<td>Typical Objective of Coating</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Air Sealing Rings</td>
<td>Annular surfaces</td>
<td>Chrome carbide LC-1B, LC-18; Tribomet® T104CS, cobalt alumina LCO-17</td>
<td>Self-mating, coated annular services</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Exhaust Fairing Pins & Bushings</td>
<td>Bearing surfaces</td>
<td>Tungsten carbide LW-1N40</td>
<td>Self-mating, bearing surfaces</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Outer Airseals & Turbine Shrouds</td>
<td>I.D. sealing surface</td>
<td>Cobalt alloy LCO-22, Mar M-509, thermal barrier LT8-8, LTB-13</td>
<td>Blade tip</td>
<td>Rub-tolerant surface for sealing; thermal barrier with erosion resistance</td>
</tr>
<tr>
<td>Outer Airseals & Turbine Shrouds</td>
<td>Inside diameters</td>
<td>Chrome carbide LC-1B</td>
<td>Air flow</td>
<td>Erosion resistance against catalyst particles in expanding gases</td>
</tr>
<tr>
<td>Outer Airseals & Turbine Shrouds</td>
<td>Gas path surfaces</td>
<td>Aluminides - SDC 1544, 1567, 1572, 1573</td>
<td>Hot gases</td>
<td>Oxidation and sulphidation resistance</td>
</tr>
<tr>
<td>Thrust Frame Boss & Clevis</td>
<td>Bearing surfaces</td>
<td>Tungsten carbide LW-1N40</td>
<td>Self-mating, bearing surfaces</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Turbine Blades</td>
<td>Unshrouded tip</td>
<td>Cobalt alumina LCO-17; Tribomet® CBN abrasive</td>
<td>Honeycomb, porous metal, nickel-base alloy</td>
<td>Rubbing wear resistance</td>
</tr>
<tr>
<td>Turbine Blades</td>
<td>Top side of shrouded tip</td>
<td>Cobalt alumina LCO-17</td>
<td>Outer airseal</td>
<td>Rubbing wear resistance</td>
</tr>
<tr>
<td>Turbine Blades</td>
<td>Shroud Z-notches and knife-edge seals</td>
<td>Chrome carbide LC-1B; cobalt alumina LCO-17, LCO-19, L-10; Tribaloy* LDT-800</td>
<td>Self-mating, interlocking shrouds</td>
<td>Fretting wear resistance above 1000°F (538°C)</td>
</tr>
<tr>
<td>Turbine Blades</td>
<td>Shroud Z-notches and knife-edge seals</td>
<td>Tungsten carbide LW-1N40</td>
<td>Self-mating, interlocking shrouds</td>
<td>Fretting wear resistance below 1000°F (538°C)</td>
</tr>
<tr>
<td>Turbine Blades Underplatform</td>
<td>Underside of platform</td>
<td>PWA 545 slurry, cathodic arc coatings, chronic and chrome aluminizing</td>
<td>Hot gases</td>
<td>Hot corrosion, SCC resistance</td>
</tr>
<tr>
<td>Turbine Blade Tips</td>
<td>Turbine blade tip</td>
<td>Tribomet® MCrAlY and abrasive tip, STCC ceramic cutting tip</td>
<td>Abradable seal material</td>
<td>Sealing at tip of turbine blade</td>
</tr>
<tr>
<td>Turbine Blades & Vanes</td>
<td>Airfoil & platform gas path surfaces</td>
<td>Cobalt alloy LCO-22, LCO-29; Thermal barrier LT8-13, LTB-13, LTB-19, MCrAlY overlays; EBPVD, EBPVD YSZ, Platinum aluminide, Vapor phase aluminide (PWA 273, 275); PAK aluminides (PWA 44, 73, 252, RPS 320); Pack chromide (F50T37, PWA 70); SermaLoy™ J slurry aluminides; Tribomet® MCrAlY</td>
<td>Hot gases</td>
<td>Oxidation and sulphidation resistance; thermal barrier</td>
</tr>
<tr>
<td>Turbine Blades & Vanes</td>
<td>Internal cooling passages</td>
<td>Vapor phase aluminide; SermaAlcote™ 2500, 2525 slurry aluminide, PWA 273 slurry, pack aluminides where access permits; also vapor chromizing</td>
<td>Hot gases</td>
<td>Internal cooling passage oxidation and corrosion resistance</td>
</tr>
<tr>
<td>Turbine Blades & Vanes</td>
<td>Damaged coating on airfoil & platform gas path surfaces</td>
<td>SermaLoy™ J slurry aluminide</td>
<td>Hot gases</td>
<td>Repair of protective coating layers</td>
</tr>
<tr>
<td>Turbine Blades & Vanes</td>
<td>Airfoil & platform surfaces</td>
<td>Cobalt alloy LCO-22, LCO-29; Thermal barrier LT8-13, LTB-13, LTB-19, MCrAlY overlays; EBPVD, Platinum aluminide; Vapor phase aluminide</td>
<td>Hot gases</td>
<td>Oxidation and sulphidation resistance; thermal barrier</td>
</tr>
<tr>
<td>Turbine Brush Seals</td>
<td>Airfoil & platform surfaces</td>
<td>Chrome carbide LC-1B</td>
<td>Hot gases</td>
<td>Erosion resistance against catalyst particles in expanding gases</td>
</tr>
<tr>
<td>Turbine Brush Seals</td>
<td>Bearing surfaces</td>
<td>Chrome carbide LC-1B, LC-1H</td>
<td>Seal bristles</td>
<td>Sliding & brush wear resistance</td>
</tr>
<tr>
<td>Turbine Stator Shrouds</td>
<td>Shroud flanges</td>
<td>Chrome carbide LC-1B, LC-18, Cobalt alumina LCO-17, LCO-19, L-103</td>
<td>Self-mating, coated vane inner-foot pads</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Turbine Vanes</td>
<td>Inner-foot pads</td>
<td>Chrome carbide LC-1B, LC-18, Cobalt alumina LCO-17, LCO-19, L-103</td>
<td>Self-mating, coated stator shroud flanges</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Turbine Exhaust Case</td>
<td>Gas path surfaces</td>
<td>SermeTel® 2241 Al-ceramic coatings</td>
<td>Corrosion resistance</td>
<td></td>
</tr>
<tr>
<td>Turbine Nozzle Case</td>
<td>Gas path surfaces</td>
<td>SermeTel® 2241 Al-ceramic coatings</td>
<td>Corrosion resistance</td>
<td></td>
</tr>
<tr>
<td>Part Name</td>
<td>Coated Area</td>
<td>Typical Coating Type</td>
<td>Typical Mating Surface</td>
<td>Typical Objective of Coating</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Bevel Gear, Gearbox Drive</td>
<td>I.D. bearing surface</td>
<td>Tungsten carbide LW-1N40</td>
<td>Self-mating, coated hub O.D.</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Bleed Manifold Expansion Joint Liners & Sleeves</td>
<td>O.D. & I.D. sealing surfaces</td>
<td>Tungsten carbide LW-1N40</td>
<td>Seal mating, coated seal rings</td>
<td>Sliding, fretting resistance</td>
</tr>
<tr>
<td>Compressor Blades</td>
<td>Blade tips of outer airfoil section</td>
<td>Aluminum+Tita (LA-229): Aluminum oxide LA-2, Zircote, Tribomet abrasive tip</td>
<td>Compressor case or abradable coating</td>
<td>Overheating, wear resistance</td>
</tr>
<tr>
<td>Compressor Blades</td>
<td>Airfoils</td>
<td>Tungsten carbide LW-2A, LW-1N30, SDG 2002, Titanium nitride 24K, Chromic carbide LC-1H, SermeTel</td>
<td>Air flow</td>
<td>Solid particle erosion (with mineral fatigue) resistance</td>
</tr>
<tr>
<td>Compressor Blades, Vanes & Stators</td>
<td>Airfoil gas path surfaces</td>
<td>SermeTel® W, 725, 2F-1, 6F-1 Al-ceramic coatings</td>
<td>Intake air</td>
<td>Corrosion resistance</td>
</tr>
<tr>
<td>Compressor Blades, Vanes & Stators</td>
<td>Airfoil gas path surfaces</td>
<td>SermeTel® W, 5375, 5380DP, SermaFlow™ S4000, SermaLon® Al-ceramic coatings</td>
<td>Intake air</td>
<td>Corrosion, fouling resistance; aerodynamically smooth surface</td>
</tr>
<tr>
<td>Compressor Blades, Vanes & Stators</td>
<td>Airfoil gas path surfaces</td>
<td>SDC 1577 diffused aluminate</td>
<td>Intake air</td>
<td>Corrosion and oxidation resistance to 550°C</td>
</tr>
<tr>
<td>Compressor Blisks</td>
<td>Airfoil gas path surfaces</td>
<td>SermeTel® 5380, 5380 DP Al-ceramic coatings</td>
<td>Intake air</td>
<td>Aerodynamically smooth surface; hot corrosion and fouling resistance to 700°C (LTHC)</td>
</tr>
<tr>
<td>Compressor Case</td>
<td>Flanges</td>
<td>Tungsten carbide LW-1N40</td>
<td>Self-mating with adjacent case</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Compressor Case</td>
<td>Entire case</td>
<td>SermeTel® W, 2241, 2242, 5380, 5380 DP, 725 Al-ceramic coatings</td>
<td>Intake air</td>
<td>Corrosion and oxidation resistance to 550°C</td>
</tr>
<tr>
<td>Compressor Case</td>
<td>Seal surfaces on I.D.</td>
<td>Ni-graphite, Al-polyester</td>
<td>Compressor blade tip</td>
<td>Sealing</td>
</tr>
<tr>
<td>Compressor Hubs</td>
<td>Bearing journal diameters</td>
<td>Tungsten carbide LW-1N40</td>
<td>Bearing inner races & tungsten carbide coated bevel gear I.D.</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Compressor Hubs & Disks</td>
<td>Snap diameters</td>
<td>Tungsten carbide LW-1N40</td>
<td>Spacer snap diameters</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Compressor Hubs & Disks</td>
<td>Most areas</td>
<td>SermeTel® W, 2241, 5380DP Al-ceramic coatings; SDC 1577 diffused alumina</td>
<td>Compressor/fan shaft; blade roots</td>
<td>Corrosion and oxidation resistance to 550°C</td>
</tr>
<tr>
<td>Compressor Hubs & Disks</td>
<td>Blade slots</td>
<td>Dry film lubricants</td>
<td>Blade roots</td>
<td>Fretting resistance; removal assurance at overhaul</td>
</tr>
<tr>
<td>Compressor Spacers</td>
<td>Most areas</td>
<td>SermeTel® W, 2241, 5380 DP Al-ceramic coatings</td>
<td>Intake air</td>
<td>Corrosion and oxidation resistance to 550°C</td>
</tr>
<tr>
<td>Compressor Rotor Tube and Sleeves</td>
<td>Seal ring grooves and lands</td>
<td>Tungsten carbide LW-1N40</td>
<td>Seal rings & tungsten carbide coated hub bushing</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Compressor Seals</td>
<td>Gas path and non-contact areas</td>
<td>SermeTel® W, 2241, 5380 DP Al-ceramic coatings</td>
<td>--</td>
<td>LTHC, corrosion resistance</td>
</tr>
<tr>
<td>Compressor Rings</td>
<td>Gas path and non-contact areas</td>
<td>SermeTel® W, 2241 Al-ceramic coatings; SermaFlow™ N3000 ceramic barrier coating</td>
<td>--</td>
<td>Corrosion, fouling and hot corrosion resistance</td>
</tr>
<tr>
<td>Diffusers, Impellers & Vane Sectors</td>
<td>Vane surfaces</td>
<td>Tungsten carbide LW-1N30, LW-2A, SDG 2002; Titanium nitride 24K, Tribomet®</td>
<td>Air flow</td>
<td>Particle erosion resistance with minimal fatigue debit</td>
</tr>
<tr>
<td>Diffuser Case</td>
<td>Gas path</td>
<td>SermeTel® W, 2241, Al-ceramic coatings</td>
<td>--</td>
<td>Corrosion and oxidation resistance to 550°C</td>
</tr>
<tr>
<td>Fan Blades & Compressor Blades</td>
<td>Midspan shroud pads</td>
<td>Tungsten carbide LW-1N40, SDG 2040</td>
<td>Self-mating, coated pads</td>
<td>High-load, high-frequency fretting wear and cracking resistance; minimal fatigue debit</td>
</tr>
<tr>
<td>Fan Blades & Compressor Blades</td>
<td>Root & foot section pressure faces</td>
<td>Copper-nickel-indium LCN-1; aluminum bronze LCU-2</td>
<td>Titanium, steel, nickel, alloy, disks & housings</td>
<td>Galling, fretting wear resistance</td>
</tr>
<tr>
<td>Gas Generator Case</td>
<td>Entire case</td>
<td>SermeTel® 5380 DP Al-ceramic coating</td>
<td>Intake, compressed air</td>
<td>Corrosion and oxidation to 550°C</td>
</tr>
<tr>
<td>HPC Stators</td>
<td>Snap diameters</td>
<td>Stellite® LS-31A; aluminum bronze LCU-2</td>
<td>Titanium steel</td>
<td>Galling, fretting wear resistance</td>
</tr>
<tr>
<td>Inlet Guide Vanes (IGVs)</td>
<td>Trunnions</td>
<td>Nickel-aluminum LN-5B</td>
<td>Self-mating, coated bearing surfaces</td>
<td>Wear, corrosion resistance</td>
</tr>
<tr>
<td>Inlet Guide Vanes (IGVs)</td>
<td>Airfoil surfaces</td>
<td>SermeTel® 5375, 5380DP, SermaFlow™ S4000 Al-ceramic coatings</td>
<td>--</td>
<td>Corrosion resistance; aerodynamically smooth surface</td>
</tr>
<tr>
<td>Variable Guide Vanes (VGVs)</td>
<td>Bearing surfaces, trunnions, drive arms, sync ring</td>
<td>Tungsten carbide LW-1N40</td>
<td>Self-mating, coated bearing surfaces</td>
<td>Fretting wear resistance</td>
</tr>
<tr>
<td>Variable Guide Vanes (VGVs)</td>
<td>Airfoil surfaces</td>
<td>SermeTel® 5375, 5380DP, SermaFlow™ S4000 Al-ceramic coatings</td>
<td>--</td>
<td>Corrosion resistance; aerodynamic surface finish</td>
</tr>
<tr>
<td>Front Frames</td>
<td>O.D. and gas path surfaces</td>
<td>SermeTel® W, 725, 2F-1, 6F-1 Al-ceramic coatings</td>
<td>Intake air</td>
<td>Corrosion resistance</td>
</tr>
<tr>
<td>Shafts</td>
<td>I.D. and O.D. surfaces</td>
<td>SermeTel® W, 2241, 1083/1140, 984/985 Al-ceramic coatings</td>
<td>Hot oils, hydraulic fluids</td>
<td>Corrosion and oxidation resistance to 550°C</td>
</tr>
</tbody>
</table>
Get more with Praxair...

Customized answers. Praxair Surface Technologies EXTREME Protection™ and ProtectionPLUS™ coatings combined with SermeTel®, ShorCoat®, SermaLoy™, SermaFlow™, and SermaLon® slurry coatings for the ultimate in flexibility, ensuring we have the right answer for your unique challenge.

Design and application support. Our coatings help bring out the best in your components, while you always get the confidence of knowing your parts have been through real-world simulations.

Uniformity and repeatability. Whether your parts are produced in the Americas, Europe or Asia, you know you’re getting consistent results you can rely on.

Innovation. Our scientists, renowned throughout the coating industry, rank among the most authoritative sources in application techniques, always looking for new surface enhancement options.
Aircraft Engine Applications

• Actuator components
• Afterburner assemblies
• Bearings and accessories
• Combustion chambers
• Combustion flame tubes
• Compressor air foils
• Compressor drums
• Discs and shafts
• Fuel nozzles and swirlers
• Rim cover plates
• Rings and seals
• Turbine air foils
• Turbine discs
• Turbine shrouds
Aviation

2,500 people, more than 30 facilities and 13 countries

Primary Facilities

Brazil
Pinhais, Brazil
Tel. +55.41.3661.6200

Canada
Dorval, Quebec, Canada
Tel. 514.631.2240

China
Changzhou, China
Tel. +86.519.8622.9000

France
St. Etienne, France
Tel. +33.4.77.42.62.62

Germany
Ratingen, Germany
Tel. +49.2102.495.0

Heiligenhaus, Germany
Tel. +49.2056.93090

Schluechtern, Germany
Tel. +49.6661.96780

India
Coimbatore, India
Tel. +91.4255.324743

Italy
Fornovo, Italy
Tel. +39.0525.401704

Monte Marenzo, Italy
Tel. +39.0341.601111

Novara, Italy
Tel. +39.0321.674803

Japan
Kozuki, Japan
Tel. +81.790.88.0564

Okagawa, Japan
Tel. +81.48.5.91.0731

Singapore
Singapore
Tel. +65.6542.2765

South Korea
Changwon, South Korea
Tel. +82.55.260.2482

Switzerland
Meiringen, Switzerland
Tel. +41.22.989.8989

United Kingdom
Lincoln, England
Tel. +44.1522.878200

Southam, England
Tel. +44.1926.81.2348

Swindon, England
Tel. +44.1934.411301

United States
Compton, CA
Tel. 310.604.0018

Manchester, CT
Tel. 860.646.0700

North Haven, CT
Tel. 203.287.2700

Indianapolis, IN
Tel. 317.240.2500

Biddeford, ME
Tel. 207.282.3787

Charlotte, NC
Tel. 704.921.5400

New Castle, PA
Tel. 724.598.1300

Houston, TX
Tel. 713.849.9474

Praxair Surface Technologies maintains additional coating and administrative facilities not listed above.

The information contained herein is offered for use by technically qualified personnel at their discretion and risk without warranty of any kind.

Printed in the United States of America
06-10
Printed on recycled paper
P-9111

Praxair Surface Technologies, Inc.
1500 Polco Street
Indianapolis, IN 46222
USA

Telephone: +1.317.240.2500
Fax: +1.317.240.2255
www.praxairsurfacetechnologies.com
info@praxair.com